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A recently proposed version of the Kohn variational principle for the 
r matrix incorporating the correct boundary condition is applied for the 
first time to the study of nucleon-nucleon scattering. Analytic expres- 
sions can be obtained for all the integrals in the method for a wide class 
of potentials and for a suitable choice of trial functions. Closed-form 
analytic expressions for these integrals are given for Yakawa and 
exponential potentials. Calculations with two commonly used S-wave 
nucleon-nucleon potentials show that the method may converge faster 
than other solution schemes not only for the phase-shifts but also for 
the off-shell t matrix elements if the freedom in the choice of the trial 
function is exploited. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Variational principles (v.p.‘s) have proved [l-7] to be 
very useful for solving scattering equations which usually 
have the Lippmann-Schwinger (LS) form [S] 

r(E) = V+ VGb+‘(E) t(E), (1) 

where t is the transition (t) matrix, V the potential, and 
Gb+ ‘(E) is the free Green function at energy E. There are dif- 
ferent types of v.p.‘s. We follow the classification of Ref. [S]. 
A Kohn-type [2] v.p. is essentially a v.p. for the operator 
(t(E) - V). The simplest v.p. of this class is the usual Kohn 
v.p. for the phase shift or for the real reactance (K) matrix 
elements. A Schwinger [l] v.p., on the other hand, is a v.p. 
for the transition matrix t(E). 

The usual Kohn v.p. does not require the calculation of 
integrals involving the free Green function and is the 
simplest of all the available v.p.‘s. This v.p. for the K 
matrix elements requires trial functions satisfying scattering 
boundary conditions. It was noted by Schwartz [9] that the 
K matrix calculated by the Kohn v.p. exhibit’s anomalous 
singularities. This has limited significantly the use of Kohn 
v.p.‘s in scattering calculations. In the Kohn method one 
has to invert the operator (E-H), where H is the full 
Hamiltonian in the space of the real trial functions. As H has 

a continuum spectrum at positive energies this process of 
inversion leads to spurious singularities. The advantage of 
the Kohn v.p. over the Schwinger v.p. in having simple 
integrals to deal with is more than offset by the presence of 
these anomalous singularities. 

It has recently been suggested [lo] that by choosing 
complex boundary conditions for the full Green function 
the Kohn v.p. readily yields the complex t matrix elements. 
In the space spanned by the complex trial function the 
operator (E - H)- ’ does not present anomalous singular- 
ities. So the difficulties associated with the appearance of 
anomalous singularities in the usual Kohn method for the 
K matrix are circumvented in the complex Kohn method for 
the t matrix. A variant of the complex Kohn method for 
directly calculating the scattering (S) matrix elements 
has also been suggested and used [lo]. The complex Kohn 
method for the t and S matrix elements are closely related 
to each other, and the S matrix version of the complex Kohn 
v.p. is also claimed to be free of anomalous singularities. 

The complex Kohn v.p. has only been suggested recently 
and has seen only limited application for a very special class 
of scattering problems in atomic physics. In the single 
channel case only an exponential potential has been con- 
sidered. In the present work we apply the complex Kohn 
v.p. for the t matrix in solving the nucleon-nucleon (NN) 
scattering problem with two phenomenological potentials 
with soft core [ 111, where precision calculations have been 
performed using other methods [4, 51. This will allow us to 
compare the results obtained with the complex Kohn v.p. 
with those obtain with other methods. Because of the 
presence of a soft core these phenomenological NN poten- 
tials are difficult to deal with both in configuration and 
momentum space calculations. There are difficulties with 
configuration space integration at small Y. In a momentum 
space treatment the momentum space infinite integrals are 
discretized by employing a momentum space mesh which 
extends to a very large value of momentum. Hence the study 
of NN scattering employing phenomenological potentials 
with soft core should be considered to be a welcome test for 
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the usefulness of any numerical method for solving LS 
equations. 

It has been shown that the Schwinger v.p. may possess 
spurious singularities [12]. But it has been pointed out 
[ 131 that they should be rare in practice and are expected 
to have little relevance to the usefulness of Schwinger v.p. 
Anomalous singularities have been recently observed [ 141 
in the complex Kohn v.p. In view of this it is interesting to 
see if this has any relevance to the application of this v.p. to 
other problems in scattering, for example, NN scattering 
with phenomenological potentials with soft core. 

We find that for the problem studied, the complex Kohn 
v.p. produces very good convergence and the accidental 
appearance of spurious singularities seems to have no 

where 

(D-l)jn= (Ujl (E-fY,+iO) (u,), (3) 

where uj, j= 1, 2, . . . . N, is a set of suitably chosen functions 
so as to satisfy certain boundary conditions of Gb”(E). For 
calculational sake, we consider all the equations in this 
work to be in partial wave form. The conliguration space 
matrix element of Eq. (2) should satisfy certain desired 
properties of the partial wave outgoing Green function 

(rl Gi+‘(E) Ir’)r=ikj,(kr,)hjl’(kr,), (4) 

relevance to the usefulness of this method. The final 
convergence obtained with the complex Kohn v.p. is better 

where j and hj” are the usual spherical Bessel and Hankel 

than the best convergence obtained so far for these 
functions, and r, (r, ) is the smaller (larger) of r and r’. 

potentials with the Schwinger v.p. 
Expression (4) is symmetric in r and r’ and satisfies the 

We not only calculated the phase-shifts but also the off- 
following boundary conditions for small and large r for a 

shell t matrix elements using the present method and find 
fixed r, and 1 = o. 

that both the phase shifts and the off-shell t matrix elements 
converge equally rapidly. This was tested by calculating the 
Kowalski-Noyes [ 141 universal half-shell functions. A 
knowledge of the on-shell t matrix and the Kowalski-Noyes 
half-shell function at all energies is enough to calculate the 
fully off-shell t matrix elements, [S] which in standard 
numerical algorithms is directly determined from the 
Lippmann-Schwinger equation. 

The plan of the paper is as follows. In Section 2 we 
present a degenerate kernel derivation of the complex Kohn 
v.p. of Ref. [lo]. Explicit analytic expressions for all matrix 
elements involved in this method are given in Section 3 for 
two choices (( 1 l)-( 13)) of expansion functions for the 
exponential and the Yukawa potentials. The exponential 
potential is of interest in atomic scattering problems [lo] 
and the Yukawa potential in nuclear scattering problems 
[ 111. In Section 4 we present numerical results for two 
phenomenological NN potentials for both choices of expan- 
sion functions and compare the results with those obtained 
by the use of Schwinger v.p. and other methods. Finally, we 
present a brief summary of our study in Section 5. 

2. COMPLEX KOHN VARIATIONAL 
PRINCIPLE 

lim (rl G;‘)(E) Ir’) 
r-m 

= f x function(r’), (5) 

lim (rl Gb+‘(E) Ir’) 
r-0 

= constant x function(r’). (6) 

A similar set of equations hold for limits r’ -+ 0 and r’ -+ co. 
The expansion functions u, of Eqs. (2)-(3) can be easily 
chosen so as to satisfy the correct outgoing wave boundary 
conditions (5)-(6) for the Green function consistent with 
the + i0 prescription. 

The exact expression (4) for the Green function Gb+‘(E) 
has a complex analytic structure as functions of r and r’; 
e.g., it has a discontinuity in the first derivative at r = r’. 
The approximation (2) does not have this behavior. 
Nevertheless, the r matrix constructed with the use of this 
approximate Green function is numerically very accurate as 
we see in the following. In the t matrix the Green function 
is sandwiched between the potential operators and a good 
pointwise representation of the Green function is not 
needed for an accurate representation of the t matrix. 

In this section we present an alternate derivation of the 
The approximate degenerate Green function of Eqs. 

complex Kohn v.p. Formally, this v.p. can be considered as (2)-(3) can be easily made to satisfy boundary conditions 

the degenerate kernel solution of Eq. (1) with the following (5)-( 6) if I u i ) is taken to satisfy 

degenerate approximation to Gh;‘(E) = (E- Ho + i0) ~’ 
(with Ho the free Hamiltonian); 

CGb+‘(E)l,= f lUn> Dnj (ujl, (2) 
n,j= I 

lim u i (r) = constant, 
r-0 

(7) 

(8) 
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and the remaining functions /u,), j # 1, are taken 

lim u,(r) = 0, 
T’cc 

lim u,(r) = constant. 
r-0 

to satisfy In previous calculations using the Kohn v.p. only the par- 
tial wave phase shifts or the on-shell K-matrix elements 

(9) were calculated. However, if one is interest in solving few- 
body scattering problems using the two-body t matrix 

(10) elements one needs the off-shell t matrix elements. The 
universal Kowalski-Noyes half-shell functions at all 
energies define the off-shell t matrix elements at an energy 

The simplest choices satisfying these conditions are 

ul(r)=<l~UI)=(U1~r)=(l-e-“‘)~ (11) 
and 

Choice A 

z.+(r) = r’-2e-xr, j=2,3 N, 3 . . . . (12) 

or 

Choice B 

u,(r) = e -(i- l)xr, j=2,3 N, , . . . . (13) 

where u in Eqs. (1 1 )-( 13) is supposed to be a variational 
parameter which should be varied so as to obtain the best 
convergence. It is obvious that these are not the only 
possible choices for uj. There could be many other possible 
choices. The objective of this work is not to exhaust all these 
possibilities but to see if these two simple choices produce 
good convergence in NN scattering involving soft core 
potentials. Of these choices only choice A has been applied 
in other numerical applications [lo]. 

When approximation (2) is used in the kernel of the LS 
equation (1) it yields the following solution, 

tN(E)= '+ g vl"n)Jnj ("jl v, (14) 
n,;=1 

and we study the convergence of these functions also in our 
numerical study [ 51. 

3. EXPLICIT MATRIX ELEMENTS 

One reason for choosing the functions (11 )( 13) in the 
present method is that for the commonly used exponential 
and Yukawa potentials all the matrix elements needed in 
the numerical evaluation of the t matrix elements using 
Eqs. (14)-( 15) can be evaluated analytically. Consequently, 
the only numerical task is the inversion of an analytically 
known matrix and simple matrix-vector multiplication, 
which can be executed on a personal computer. 

The on-shell S wave (I= 0) t matrix elements are 
parametrized by means of the phase-shift 6 via 

where k2 = 2mE/h2, with m the reduced mass. 
The explicit S wave matrix elements of the t matrix (14) 

is given by 

(PI t,dE) 14) = (PI 0 14) 

+ i <PI u l”n> Jnj C”jl u 14)3 Cl71 
II,]= I 

(J-l)jn= (u,l (k2-2) lu,). (18) 
where 

In Eqs. (17)-(18) us2mV/ii2 and 
(J-‘)jn= (Ujl (E-H+iO) (u,), (15) 

2 = 2mHJA’ = - $ + v(r). (19) 
with H = Ho + V. Equation (14) is the desired complex 
Kohn v.p. for the t matrix [lo]. The variational property of 
expression (14), and its equivalence with the Kohn v.p. are The matrix elements of Eqs. (17)-(18) are explicitly 

established in Ref. [S]. written as 

In this method the outgoing wave nature of the t matrix 
is taken care of via the choice of expansion functions 
(1 1 )-( 13). The function ui is complex and the functions uj, 

(u~I (k2-X) Itt;)=Jom (ruj(r))[k2+$-o(r)] 

j = 2, . . . . N, are real. The correct boundary condition is 
imposed by taking ( u1 I r ) and (r I u i ) to be equal and not 

x (rui(r)) dr, (20) 

complex conjugate of each other as in the case of complex 
functions in quantum mechanics [lo]. As in the usual Kohn 

C”jl u 14) = <Sl v l”j> 

method, in expansion (14)-(15) one does not require 
=I 

co 

integrals involving the Green function. 
uj(r) u(r) 7 r2 dr. (21) 

0 
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We consider the matrix elements 
potential with the parameter P( =O, l), 

V(r) = VorpPewp’, 

of the following 

(22) 

where P = 0 (1) corresponds to the exponential (Yukawa) 
potential. In this case 

(PI v 14)= ivd(4Pq)l lnC(fl*+(p+q)*l 

x {P2+bJ-d2)-11~ P= 1, (23) 

=a%w+(P-q)2~-1 

x {P’ + (P + cd21 -‘, P=O, (24) 

where v0 = 2m V,/ti’. 
For the choice A expansion functions (ll)-(12) the 

necessary matrix elements are given by 

= o,[ln(p - 2ik) + ln(p + 2a - 2ik) 

- 21n(p t- CI -22X)] 

- a - a(2ik - a)(2a - 2ik) ~ l, P= 1, 

= -v,((p-2ik)-‘+(p+22a-2ik)~’ 

- 2(p + a - 2&y} 

(25) 

-a-u.(2ik-a)(2a-2ik)-1, P = 0, (26) 

(UI I v IP) 

= {vol(2~)~Ctan-’ {(p+k)l~}+tan-‘{(p-k)l~} 

-tan-‘{(P+k)l(~+~L~ 

-tan~‘{(P-~k)l(~+~))l 

+ i{v,l(4~)1 lnCb* + (P + k)*I 

x {(P++a)‘+b-k)*l 

x {P2 + (P - W2) -’ {(P + 4* 

+(P+w-ll, P= 1, (27) 

= v,(p2 + p* - k* + 2ipk) 

x (p2+(p-k)2}p1 {p*+(p+k)*}-’ 

- II,-,{ (a + p)’ + p* - k2 + 2i(a + ,u)k} 

x {(ct+p)2+(p-k)2}-1 

x ((a+/4*+(p+k)*)--l, P=O (28) 

(ujl (k*--) 1~1) 

= -v,(j-P- l)! [(a+p-ik)p-’ 

- (2a + p - ik)p-‘] 

+ (j- l)! cr(2ik-a)(2a-ik)-‘, 

j> 1, P=O, 1, (29) 

C”jl v IP) 
= (v,/p)(j- P- l)! {(lx +p)2+ p*}(p--i)‘* 

xsin[(j-P)tanl{p/(cr+p)}], 

j> 1, P=O, 1, 

<u,l (k2-W lun> 

(30) 

=k*(j+.-2)! (2ct)‘-‘-“+(j+n-4)! (2~r)~~‘~” 

x(j*+n*-2nj-j-n+2)/4 

-v,(j+n-P-2)! (2a+p)‘+pp’pn, 

j, n> 1, P=O, 1, (31) 

wherej and n are used to label the expansion functions and 
i= (- 1)1/2. 

For the choice B expansion function given by Eqs. ( 11) 
and (13) we need the following integrals in addition to those 
given by Eqs. (23)-(28): 

(ujl (k*--I IUI> 
= -vo[{,u+((j-l)a-ik}p-2-(jct+p-ik)p~2] 

+a(2ik-cc)(jor-ik)-*, P=O, l;j>l (32) 

(u,l fJ IP) 
=vo[2{p++(j-1)cr}]1~p 

x [{p+((j- l)cr}*+p*]pp2, P=O, l;j> 1, (33) 

<ujl (k*--) lun> 

x{k*-a*(j-l)(n-1)}, P=O, l;j,n>l. (34) 

4. NUMERICAL RESULTS 

To see how the complex Kohn v.p. works in practice, we 
have carried out additional numerical calculations with two 
of the semiphenomenological NN potentials [ 111 which 
have been frequently used in few-nucleon calculations. 
These potentials possess soft cores and present difficulties 
in convergence in numerical treatment. So, if we can 
demonstrate good convergence with these potentials, it is 
expected that the method will converge well for other 
methods. These potentials are superposition of Yukawa 
potentials. Explicitly, these potentials have the form 

V(r)= f Vjrpleepfr, 
j=l 

(35) 

where for the IS, Reid soft core potential M= 3 and 
V, = - 10.463/0.7 MeV fm, V2 = - 1650.6/0.7 MeVfm, V, = 
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TABLE I 

Phase-Shifts for the Reid Potential for Different N calculated by 
the Complex Kohn Method with Choices A and B of Expansion 
Functions given by Eqs. ( 11 t( 13) 

Results for N = 

E 
(Mkmv) Choice 4 6 8 10 14 16 

A -0.85749 0.85986 0.86058 0.86062 0.86063 0.86063 
12 B 0.83131 0.86002 0.86062 0.86063 

S 0.8500 0.8554 0.8604 0.8604 0.8605 0.8606 
A 0.42694 0.43974 0.44015 0.44018 0.44019 0.44019 

48 B 0.40785 0.43974 0.44023 0.44020 
S 0.4535 0.4363 0.4398 0.4398 0.4401 0.4402 
A 0.23146 0.26253 0.26302 0.26303 0.26303 0.26303 

72 B 0.21178 0.26249 0.26306 0.26303 
S 0.2783 0.2577 0.2620 0.2624 0.2627 0.2630 
A -0.16714 a.21652 a.21608 -0.21638 4.21638 -0.21638 

176 B -0.11473 a.21709 XI.21631 4.21631 
S -0.2499 a.2217 -0.2167 a.2180 a.2167 a.2164 

Note. The choice S represents the Schwinger variational phase shifts 
taken from Table II of Ref. [4] denoted choice A there. 

6484.210.7 MeV fm, ,ui = 0.7 fm-‘, pZ = 4pL,, pa = 7pL,, 
and for the alternate potential M= 2 and V, = 
-570.3316MeVfm, V2= 1438.4812MeVfm, pi= 1.55fm-‘, 
p2 = 3.11 fin-‘. The latter has a single bound state at 
E = -0.35 MeV. It is interesting to recall that previous 
numerical study of the complex Kohn method used a simple 
exponential potential and confirmed rapid convergence 
when compared [lo] to other methods such as the one 
based on the usual Schwinger v.p. 

We present results for both choices of expansion func- 
tions, for both these potentials. The parameter CY in the 
expansion functions is supposed to be varied to improve 
the convergence rate. The values finally adopted were 
a=5fm-’ for the choice A functions (llt( 12) and 

TABLE II 

Same as in Table I for the Alternate Potential 

Results for A’= 

E 
(Mhmv) Choice 4 6 8 10 14 16 

A 1.08659 1.09965 1.09972 1.099726 1.099728 1.099728 
12 B 1.09944 1.09969 1.09973 1.099731 

S 1.0982 1.0997 1.0997 1.0996 
A 0.54891 0.54887 0.54998 0.550055 0.550055 0.550055 

48 B 0.54940 0.54986 0.55004 0.550053 
S 0.5457 0.5490 0.5498 0.5503 
A 0.36501 0.37101 0.37300 0.373020 0.373023 0.373023 

72 B 0.36943 0.37224 0.37293 0.373011 
S 0.3515 0.3722 0.3728 0.3731 
A 0.30073 a.03090 -0.02931 a.03112 a.031 140 X1.031140 

176 B 0.37447 a.01288 XI.03073 402993 
S a.1507 -0.0374 a.0323 -0.0314 

Note. The Schwinger variational phase-shifts S are taken from Table II 
of Ref. [S], denoted choice 1 there. 

a = 1.4 fm - ’ for the choice B functions (11) and (13). For 
the NN scattering problem we take k2/2m = 41.47 MeV fm*. 

In Table I we give elastic scattering phase shifts for the 
i&, Reid soft core potential for both expansion functions 
and compare them with the best results obtained by the 
Schwinger v.p. taken from Ref. [4] (denoted choice A 
there). In Table II we give exactly the same quantities as in 
Table I, but for the alternate potential and compare them 
with the result of Schwinger v.p. taken from Ref. [4] 
(denoted choice 1 there). 

From Tables I and II we see that the phase-shifts 
converge rapidly for both potentials and for both choices 
of expansion functions. However, convergence is easier to 
obtain in the case of the alternate potential than in the case 
of the Reid potential possibly because of the stronger 
repulsive core of the latter. In order to check the possible 
existence of any hidden systematic errors in all three 
calculations of Tables I and II, we also compared the pre- 
sent phase shifts with those calculated with entirely different 
methods such as by direct matrix inversion or by iteration 
whenever available [S, 11, 17, 183. The agreement between 
our results and these calculations assured us of the absence 
of any systematic errors. 

A point of technical importance is that as the functions 
used in this work are not orthogonalized, for large N they 
tend to be similar and the matrix J-’ of Eq. (15) tend 
to become singular and one faces numerical trouble in 
inverting it. In the present calculation, carried out in double 
precision-about 16 decimal places-numerical difficulty in 
matrix inversion appeared only for N> 16 ( > 10) for 
choice A (B) functions. 

At higher energies, particularly at 176 MeV, the con- 
vergence is slower with the choice B function and the 
Schwinger (S) method. For the choice B function the 

-0.4 - 

-Q8- 

p(fd 

FIG. 1. Kowalski-Noyes half shell funcionf(p, k) for different N for 
the Reid potential at EC, = 12 MeV. The N= 3 result is indistinguishable 
from the N > 3 results. 
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TABLE III 

Kowalski-Noyes Half-Shell Functionsf(p, k) for the Alternate Potential with Choice A Expansion Function for 
Various N at EC,,, = 48 MeV. 

Results for N = 

Pm-‘) 1 4 6 10 > 12 

0.5 1.5872 + IO-Ii 1.34678 + 10 -Ii 1.35216+ 10-3i 1.350656 + lo-% 1.350652 + lo-‘i 
1.0 1.0928 + IO-? 1.06418 + lo-‘i 1.06480 + lo-? 1.064598 - lo-‘i 1.064598 + IO-‘% 

1.5 0.4699 - lo-‘i 0.56859 - 10-3i 0.56648 - lo-? 0.567073 + 10 -‘i 0.567071 + lo-‘i 
2.0 -0.0354 - IO-‘i 0.04418 - 10-3i 0.04204 + lo-% 0.042110+ lo-‘i 0.042110+ lo-‘i 
3.0 -0.4365 - lo-‘i -0.51694 + 10m3i -0.51718 - lo-% -0.517571+ lo-‘i -0.517571+ lo-‘i 
4.0 -0.4102 - lo-‘i -0.53945 + lo-‘i -0.53825 - 10m3i -0.537611 - IO-‘i -0.537609 + IO-‘i 
6.0 -0.02045 - 1OV’i -0.27233 + 10-3i -0.27065 - 10p4i -0.27068 + lo-‘i -0.27069 + 10m7i 
8.0 -0.0914 - lo-‘i -0.12186+ 10-3i -0.12067+ 10m4i -0.12090 - lo-‘i -0.12098 + 10m7i 

10.0 -0.0414 - lo-‘i -0.06206 + 10-4i -0.06083 + 10m4i -0.061037 - lo-‘i -0.061031 + lo-‘i 

Note. Only the order of magnitude of the imaginary part has been shown. The method does not yield explicitly unitary results. The order ofmagnitude 
of the imaginary part off is a good measure of unitary violation. 

numerical difficulty with matrix inversion sets up before 
the result converges to desired accuracy. 

In Table III we show the half-shell function for the alter- 
nate potential for the choice A functions at EC,,. = 48 MeV 
for different N. At a given energy the half-shell function is 
defined by f(p, k) = (~1 t(E) Jk)/(kl t(E) Ik). This is to 
the best of our knowledge the first calculation of the half- 
shell function using the Kohn or the complex Kohn v.p. 

From Tables I-III we find that both the phase shifts and 
the half-shell functions converge equally rapidly. The final 
convergence of the phase-shifts obtained with the complex 
Kohn v.p. is extremely good and is faster than that obtained 
with Schwinger v.p. or other degenerate kernel/separable 
expansion methods. The convergence obtained in the 
present study is much better than that obtained with the 
Schwinger v.p. denoted by S in Tables I and II. For N= 14 
the ‘S, Reid soft core (alternate potential) phase shifts of 
the Kohn v.p. with choice A expansion functions have 
converged to an estimated numerical accuracy of < 0.005 % 
( < 0.0005 % ). 

In Fig. 1 we plot the half-shell function for the Reid 
potential for the choice A function at EC.,, = 12 MeV for 
various N. It is realized that the half-shell function 
converges very rapidly. 

The precision obtained with the present method is better 
than that obtained with any separable expansion [4, 51 or 
degenerate kernel methods [ 161 and is comparable to one 
of the best previous precision [17] obtained (for the Reid 
‘So potential) with the use of the co-called iteration sub- 
traction method. 

In order to solve the LS equation the integral equation is 
basically transformed into a matrix equation which is then 
solved by matrix inversion, iteration, or otherwise. The 
infinite integral in momentum space of the LS equation, in 
other methods, is usually transformed into a discrete sum. 

In order to achieve a precision comparable to that of the 
present method one requires to take about 100 discrete 
mesh points. This procedure involves handling 100 x 100 
matrices in momentum space [ 181. The same precision is 
obtained in the present method via matrices of dimension 
10-15. 

Often claim has been made about the superiority of the 
Kohn v.p. over the Schwinger v.p. in atomic scattering 
problems [7, 10, 193. In the present study we observe the 
superiority of the complex Kohn method over the 
Schwinger method in nuclear scattering problems. Usually, 
such a comparison is not to the point, because in these two 
methods different functions are expanded using a set of trial 
functions. In order to find a rapidly convergent expansion, 
the set of expansion funcions must be appropriately 
modified. From the observed superiority of the Kohn v.p. 
it seems that the choice of an optimal set of expansion 
functions in the Kohn or the complex Kohn method is 
under control, whereas the same in the Schwinger method is 
a more difficult task. 

However, it is interesting to recall that in order to incor- 
porate the correct outgoing wave boundary condition the 
expansion functions in the complex Kohn v.p. are not only 
energy dependent but include unnormalizable complex 
functions. The Schwinger v.p., on the other hand, employs 
only real normalizable functions. Hence it is not surprising 
that the larger degree of freedom associated with the choice 
of expansions functions of the Kohn method leads to rapid 
convergence. 

5. SUMMARY 

We have applied for the first time the complex Kohn v.p. 
for the solution of the LS equation for NN scattering with 
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two phenomenological potentials with soft core. We 
calculated both scattering phase shifts and Kowalski-Noyes 
half-shell functions. We find that the method leads to rapid 
convergence and high precision results. The rate of con- 
vergence obtained with the complex Kohn v.p. is superior to 
that obtained with the Schwinger v.p. Previously, the same 
conclusion was arrived at in atomic scattering problems. We 
realize that the higher flexibility in the choice of expansion 
functions in the Kohn method is responsible for the superior 
rate of convergence and high precision result obtained with 
this method. 
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